• Articles
  • Api Documentation
Show / Hide Table of Contents
  • Paramdigma.Core
    • Convert
    • Intersect3D
    • Intersect3D.LineLineIntersectionResult
    • Intersect3D.LineLineIntersectionStatus
    • Intersect3D.LinePlaneIntersectionStatus
    • Intersect3D.RayFacePerimeterIntersectionStatus
    • Settings
  • Paramdigma.Core.Collections
    • Interval
    • Matrix<T>
  • Paramdigma.Core.Curves
    • Geodesics
    • LevelSets
  • Paramdigma.Core.Exceptions
    • UnsetGeometryException
  • Paramdigma.Core.Extensions
    • Lists
  • Paramdigma.Core.Geometry
    • BaseCurve
    • BasePoint
    • Box
    • Circle
    • Cylinder
    • Delaunay
    • InvalidCurveException
    • Line
    • Line2d
    • Mesh
    • MeshCorner
    • MeshEdge
    • MeshFace
    • MeshGeometry
    • MeshHalfEdge
    • MeshPoint
    • MeshTopology
    • MeshVertex
    • NurbsCurve
    • NurbsSurface
    • Plane
    • Point2d
    • Point3d
    • Point4d
    • Polyline
    • Polyline2d
    • Ray
    • Ray2d
    • Rectangle2d
    • Sphere
    • Torus
    • Vector2d
    • Vector3d
    • VectorNd
  • Paramdigma.Core.Geometry.Interfaces
    • ICurve
    • ISurface
    • IVector
  • Paramdigma.Core.IO
    • CsvReader
    • CsvWritter
    • OBJMeshData
    • ObjReader
    • ObjWritter
    • OffMeshData
    • OffReader
    • OffResult
    • OffWriter
  • Paramdigma.Core.LinearAlgebra
    • Complex
    • LeastSquaresLinearFit
    • Triplet
    • TripletData
  • Paramdigma.Core.Optimization
    • GradientDescent
    • GradientDescent.FitnessFunction
    • GradientDescentOptions
    • GradientDescentResult
    • KMeansCluster
    • KMeansClustering
    • KMeansClustering.IterationCompletedEventArgs
  • Paramdigma.Core.Spatial
    • DelaunayEdge
    • DelaunayPoint
    • DelaunayTriangle
    • Octree
    • PointCloud
    • PointCloudMember
    • QuadTree

Class Polyline2d

Represents a 2-dimensional polyline.

Inheritance
System.Object
Polyline2d
Namespace: Paramdigma.Core.Geometry
Assembly: Paramdigma.Core.dll
Syntax
public class Polyline2d : object

Constructors

| Improve this Doc View Source

Polyline2d(List<Point2d>, Boolean)

Initializes a new instance of the Polyline2d class.

Declaration
public Polyline2d(List<Point2d> vertices, bool closed)
Parameters
Type Name Description
List<Point2d> vertices

Vertices of the polyline.

System.Boolean closed

Determine if polyline should be closed or not.

Properties

| Improve this Doc View Source

BoundingBox

Gets the bounding box of the polyline.

Declaration
public Rectangle2d BoundingBox { get; }
Property Value
Type Description
Rectangle2d

2D bounding box.

| Improve this Doc View Source

Domain

Gets the domain of the polyline.

Declaration
public Interval Domain { get; }
Property Value
Type Description
Interval
| Improve this Doc View Source

IsClosed

Gets or sets a value indicating whether the polyline is closed.

Declaration
public bool IsClosed { get; set; }
Property Value
Type Description
System.Boolean

True if closed.

| Improve this Doc View Source

Length

Gets the length of the polyline.

Declaration
public double Length { get; }
Property Value
Type Description
System.Double
| Improve this Doc View Source

Segments

Gets the polyline segments.

Declaration
public List<Line2d> Segments { get; }
Property Value
Type Description
List<Line2d>

List of segments.

| Improve this Doc View Source

Vertices

Gets or sets the polyline vertices.

Declaration
public List<Point2d> Vertices { get; }
Property Value
Type Description
List<Point2d>

List of vertices.

Methods

| Improve this Doc View Source

Area()

Computes the area of the polyline.

Declaration
public double Area()
Returns
Type Description
System.Double

Area as number.

| Improve this Doc View Source

IsClockwise()

Checks if the current polyline is CW or CCW.

Declaration
public bool IsClockwise()
Returns
Type Description
System.Boolean

TRUE if the polyline is CW. FALSE if the polyline is CCW.

| Improve this Doc View Source

Reparametrize()

Reparametrizes the current curve to a unit interval.

Declaration
public void Reparametrize()
  • Improve this Doc
  • View Source
Back to top Generated by DocFX